Early activated replication origins within the cell cycle-regulated histone H4 genes in Physarum.

نویسندگان

  • M Bénard
  • G Pierron
چکیده

It was previously shown that the two members of the cell cycle-regulated histone H4 gene family, H4-1 and H4-2, are replicated at the onset of S phase in the naturally synchronous plasmodium of Physarum polycephalum, suggesting that they are flanked by replication origins. It was further shown that a DNA fragment upstream of the H4-1 gene is able to confer autonomous replication of a plasmid in the budding yeast. In this paper, we re-investigated replication of the unlinked Physarum histone H4 genes by mapping the replication origin of these two loci using alkaline agarose gel and neutral/neutral 2-dimensional agarose gel electrophoreses. We showed that the two replicons containing the H4 genes are simultaneously activated at the onset of S phase and we mapped an efficient, bidirectional replication origin in the vicinity of each gene. Our data demonstrated that the Physarum sequence that functions as an ARS in yeast is not the site of replication initiation at the H4-1 locus. We also observed a stalling of the rightward moving replication fork downstream of the H4-1 gene, in a region where transient topoisomerase II sites were previously mapped. Our results further extend the concept of replication/transcription coupling in Physarum to cell cycle-regulated genes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Transcription of alpha-tubulin and histone H4 genes begins at the same point in the Physarum cell cycle

In naturally synchronous plasmodia of Physarum polycephalum, both tubulin and histone gene transcription define periodic cell cycle-regulated events. Using a slot-blot hybridization assay and Northern blot analysis, we have demonstrated that a major peak of accumulation of both alpha-tubulin and histone H4 transcripts occurs in late G2 phase. Nuclear transcription assays indicate that both gene...

متن کامل

Cell Timer/Cell Clock

Like the biological clock in the body, replication of each cell type (even different cells of the same organism) follows a timing program. Abnormal function of this timer could be an alarm for a disease like cancer. DNA replication starts from a specific point on the chromosome that is called the origin of replication. In contrast to prokaryotes in which DNA replication starts from a single ...

متن کامل

Transcription of a-Tubulin and Histone H4 Genes Begins at the Same Point in the Physarum Cell Cycle

In naturally synchronous plasmodia of Physarum polycephalum, both tubulin and histone gene transcription define periodic cell cycle-regulated events. Using a slot-blot hybridization assay and Northern blot analysis, we have demonstrated that a major peak of accumulation of both a-tubulin and histone H4 transcripts occurs in late G2 phase. Nuclear transcription assays indicate that both genes ar...

متن کامل

HBO1 histone acetylase activity is essential for DNA replication licensing and inhibited by Geminin.

HBO1, an H4-specific histone acetylase, is a coactivator of the DNA replication licensing factor Cdt1. HBO1 acetylase activity is required for licensing, because a histone acetylase (HAT)-defective mutant of HBO1 bound at origins is unable to load the MCM complex. H4 acetylation at origins is cell-cycle regulated, with maximal activity at the G1/S transition, and coexpression of HBO1 and Jade-1...

متن کامل

Histone synthesis during the cell cycle of Physarum polycephalum. Synthesis of different histone species is not under a common regulatory control.

The synthesis of histones and nonhistone nuclear proteins was studied during the naturally synchronous cell cycle of Physarum polycephalum. Contrary to the commonly accepted idea of a tight coupling of histone biosynthesis and DNA replication during the somatic cell cycle we found that 40% of total histone synthesis takes place in the G2 period in the complete absence of DNA synthesis. The core...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 27 10  شماره 

صفحات  -

تاریخ انتشار 1999